LinkedIn Insight Mathematics And Statistics Board Question Paper: March 2023
Mathematics And Statistics Board Question Paper: March 2023

Mathematics And Statistics Board Question Paper: March 2023

Time: 3 Hrs.

Max. Marks: 80


General instructions:

  • Section A:
    Q. 1 contains Eight multiple choice type ofquestions, each carrying Two marks.
    Q. 2 contains Four very short answer type questions, each carrying one mark.
  • Section B:
    Q. 3 to Q. 14 contain Twelve short answer type questions, each carryingTwo marks. (Attempt any Eight)
  • Section C:
    Q. 15 to Q. 26 contain Twelve short answer type questions, each carryingThree marks. (Attempt any Eight)
  • Section D:
    Q. 27 to Q. 34 contain Eight long answer type questions, each carrying Four marks.(Attempt any Five)
  • Use of log table is allowed. Use of calculator is not allowed.
  • Figures to the right indicate full marks.
  • Use of graph paper is not necessary. Only rough sketch of graph is expected.
  • For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g. (a)……/ (b)……./ (c)………etc. No marks shall be given, if ONLY the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
  • Start answer to each section on a new page.

SECTION-A

Q.1 Select and write the correct answer for the following multiple choice type of questions: (2M each: 16M)

i. If p\wedge q is F, p\rightarrow q is F then the truth values of p and q are _______ respectively.

(a) T, T

(b) T, F

(c) F, T

(d) F, F

ii. In \triangleABC, if c^2\;+\;a^2\;\;–\;b^2\;\;=\;ac, then \angleB = _______.

(a) 4 \frac{\mathrm\pi}4

(b) 3 \frac{\mathrm\pi}3

(c) 2 \frac{\mathrm\pi}2

(d) 6 \frac{\mathrm\pi}6

iii. The area of the triangle with vertices (1, 2, 0), (1, 0, 2) and (0, 3, 1) in sq. unit is _______.

(a) \sqrt5

(b) \sqrt7

(c) \sqrt6

(d) \sqrt3

iv. If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0) then the point of minimum z\;=\;3x\;+\;2y\; is______.

(a) (2, 2)

(b) (0, 10)

(c) (4, 0)

(d) (3, 4)

v. If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = _______.

(a) 2

(b) 0

(c) –1

(d) 1

vi. \int\cos^3\;x\;dx\;=\_\_\_\_\_\_.

(a) \frac1{12}\;\sin\;3x\;+\;\frac34\;\sin\;x\;+\;c

(b) \frac1{12}\;\sin\;3x\;+\;\frac14\;\sin\;x\;+\;c

(c) \frac1{12}\;\sin\;3x\;-\;\frac34\;\sin\;x\;+\;c

(d) \frac1{12}\;\sin\;3x\;-\;\frac14\;\sin\;x\;+\;c

vii. The solution of the differential equation \frac{\operatorname dx}{\operatorname dt}=\frac{x\log x}t is____.

(a) x\;=\;e^{ct}

(b) x\;+\;e^{ct}\;=\;0

(c) x\;=\;e^t\;\;+\;t

(d) xe^{ct}\;=\;0

viii. Let the probability mass function (p.m.f.) of a random variable X be P(X = x){}^4C_x\begin{pmatrix}\frac59\end{pmatrix}^x\times\begin{pmatrix}\frac49\end{pmatrix}^{4-x}, for x = 0, 1, 2, 3, 4 then E(X) is equal to _______

(a) \frac{20}9

(b) \frac9{20}

(c) \frac{12}9

(d) \frac9{25}

Q.2. Answer the following questions: (1M each: 4M)

i. Write the joint equation of co-ordinate axes.

ii. Find the values of c which satisfy \left|c\overline u\right|=3 where \overline u\;=\widehat{i\;}+2\widehat j+3\widehat k .

iii. Write \int\cot\;x\;dx.

iv. Write the degree of the differential equation {}_e\frac{dy}{dx}_{+\frac{dy}{dx}=x}.

SECTION-B

Attempt any EIGHT of the following questions: (2M each: 16M)

Q.3. Write inverse and contrapositive of the following statement:If x < y then x^2<y^2

Q.4. If A=\begin{bmatrix}x&0&0\\0&y&0\\0&0&z\end{bmatrix} is a non singular matrix, then find A^{-1} by elementary row transformations. Hence write the inverse of\begin{bmatrix}2&0&0\\0&1&0\\0&0&-1\end{bmatrix}

Q.5. Find the cartesian co-ordinates of the point whose polar co-ordinates are \left(\sqrt2\frac{\mathrm\pi}4\right) .

Q.6. If ax^2+2hxy+by^2=0 represents a pair of lines and h^2=ab\neq0 then find the ratio of their slopes.

Q.7. If \overline a,\;\overline b\;,\overline c are the position vectors of the points A, B, C respectively and 5\overline a+\;3\overline b\;-8\overline c\;=\;\overline0 then find the
ratio in which the point C divides the line segment AB.

Q.8. Solve the following inequations graphically and write the corner points of the feasible region:
2x\;+\;3y\leq6,\;x+y\geq2,\;x\geq0,\;y\geq0

Q.9. Show that the function f(x)\;=\;x^3\;+\;10x\;+\;7,\;x\in R is strictly increasing.

Q.10. Evaluate: \int_0^\frac{\mathrm\pi}2\sqrt{1-\cos4x}dx

Q.11. Find the area of the region bounded by the curve y^{2\;}=\;4x , the X-axis and the lines x = 1, x = 4 for y\geq0 .

Q.12. Solve the differential equation
cos x cos y dy – sin x sin y dx = 0

Q.13. Find the mean of number randomly selected from 1 to 15.

Q.14. Find the area of the region bounded by the curve y=x^2 and the line y = 4.

SECTION-C

Attempt any EIGHT of the following questions: (3M each: 24M)

Q.15. Find the general solution of \sin\theta\;+\;\sin\;3\theta\;+\;\sin\;5\theta\;=\;0\;

Q.16. If -1\leq x,\leq x\;1 , the prove that \sin^{-1}x+\;\cos^{-1}x\;=\;\frac{\mathrm\pi}2

Q.17. If \theta is the acute angle between the lines represented by ax^2\;+\;2hxy\;+\;by^2\;=\;0 then prove that \tan\;\theta=\left|\frac{2\sqrt{h^2-ab}}{a+b}\right|

Q.18. Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are
–2, 1, –1 and –3, –4, 1.

Q.19. Find the shortest distance between lines \frac{x-1}2=\frac{y-2}3=\frac{z-3}4\;and\;\frac{x-2}3=\frac{y-4}4=\frac{z-5}5\;.

Q.20. Lines \overline r=\left(\widehat i+\widehat j-\widehat k\right)+\lambda\left(2\widehat i-2\widehat j+\widehat k\right)\;and\;\overline r=\left(4\widehat i-3\widehat j+2\widehat k\right)+\mu\left(\widehat i-2\widehat j+2\widehat k\right) are coplanar. Find the equation of the plane determined by them.

Q.21. If y\;=\;\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+.....+\infty}}} ,then
show that \frac{\operatorname dy}{\operatorname dx}=\frac{sec^2x}{2y-1} . find \frac{\operatorname dy}{\operatorname dx}\;at\;x=0.

Q.22. Find the approximate value of \sin(30^\circ30'). give that 1^\circ=0.0175^c\;and\;\cos\;30^\circ\;=\;0.866

Q.23. Evaluate \int x\;\tan^{-1}\;xdx

Q.24. Find the particular solution of the differential equation \frac{dy}{dx}=e^{2y}\;\cos\;x,\;when\;x=\frac{\mathrm\pi}6,\;y=0

Q.25. For the following probability density function of a random variable X, find (a) P(X < 1) and (b) P(| X| < 1).

f(x)=\frac{x+2}{18}\;;for -2<x<4
=0, otherwise

Q.26. A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of at least 5
successes .

SECTION-D

Attempt any FIVE of the following questions: (4M each: 20M)

Q.27. Simplify the given circuit by writing its logical expression. Also write your conclusion.

Q.28. If A\;=\;\begin{vmatrix}1&2\\3&4\end{vmatrix}\;verify\;that\;A(adjA)\;=\;(adjA)A=\left|A\right|I

Q.29. Prove that the volume of a tetrahedron with coterminus edges \overline a,\;\overline b\;and\;\overline c\;is\;\frac16\left[\overline a\;\overline b\;\overline c\right]\;.
Hence, find the volume of tetrahedron whose coterminus edges are \overline a=\widehat i\;+\;2\widehat j+\;3\widehat k,\;\overline b=\;\widehat{-i}+\widehat{\;j}+\;\;2\widehat k\;and\;\;\overline c=\;2\widehat i\;+\widehat{\;j}+4\widehat k\;.

Q.30. Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line \overline r\;=\;\left(7\widehat i\;+\;7\widehat j\;+\;6\widehat k\right)\;+\lambda\;\left(-2\widehat i\;+\;2\widehat j+\;3\widehat k\right)\;

Q.31. If y\;=\;\cos\left(m\;\cos^{-1}\;x\right) then show that \left(1\;-\;x^2\right)\frac{d^2y}{dx^2}\;-\;x\frac{dy}{dx}\;+\;m^2y=\;0

Q.32. Verify Lagrange’s mean value theorem for the function f(x)\;=\;\sqrt{x+4}\;on\;the\;interval\;\lbrack0,5\rbrack.

Q.33. Evaluate: \int\frac{2x^2-3}{\left(x^2-5\right)\left(x^2+4\right)}dx

Q.34. Prove that: \int_0^{2a}f(x)\;dx=\int_0^af(x)\;dx+\int_0^af(2a-x)dx

Related Posts

Scroll to Top