GATE EE Syllabus and Previous Papers with Official Keys

GATE EE Syllabus and Previous Papers with Official Ans-keys | Electrical Engineering

GATE EE Syllabus and Previous Papers
Current Status
Not Enrolled
Price
Free
Get Started

GATE EE Syllabus (Electrical Engineering)

GATE 2023 is going to be conducted by IIT Kanpur. The latest GATE Syllabus for Electrical Engineering is taken from the official website.

From the official link for GATE EE Syllabus 2023 PDF

GATE EE Syllabus for GATE 2023

Section: Engineering Mathematics
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.
Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Divergence theorem, Green’s theorem.
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables.
Complex variables: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals.
Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.

Section: Electric circuits
Network elements: ideal voltage and current sources, dependent sources, R, L, C, M elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin’s, Norton’s, Superposition and Maximum Power Transfer theorem; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, star-delta transformation, complex power and power factor in ac circuits.

Section: Electromagnetic Fields
Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Section: Signals and Systems
Representation of continuous and discrete time signals, shifting and scaling properties, linear time invariant and causal systems, Fourier series representation of continuous and discrete time periodic signals, sampling theorem, Applications of Fourier Transform for continuous and discrete time signals, Laplace Transform and Z transform.

Section: Electrical Machines
Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines

Section: Power Systems
Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐current, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion, Economic Load Dispatch (with and without considering transmission losses).

Section: Control Systems
Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems, R.M.S. value, average value calculation for any general periodic waveform.

Section: Electrical and Electronic Measurements
Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Section: Analog and Digital Electronics
Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers: characteristics and applications; single stage active filters, Sallen Key, Butterworth, VCOs and timers, combinatorial and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers, sample and hold circuits, A/D and D/A converters.

Section: Power Electronics
Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three-phase configuration of uncontrolled rectifiers; Voltage and Current commutated Thyristor based converters; Bidirectional ac to dc voltage source converters; Magnitude and Phase of line current harmonics for uncontrolled and thyristor based converters; Power factor and Distortion Factor of ac to dc converters; Single-phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation.

From the official link for GATE EE Syllabus 2023 PDF

Previous GATE Electrical Papers

GATE EE Previous Year Papers with Official Answer Keys

Past GATE papers would certainly help you a lot to form proper planning and to make your preparation for the GATE Exam entire and ultimately boost your GATE Score.

Now you need not to overflow your Mobile or Laptop with PDFs. We are providing you previous GATE EE exam papers in a responsive way, online course format for absolutly FREE! Enroll into this FREE Course to view all previous year GATE EE papers.

Previous Year Solved GATE EE Papers

The beauty of previous GATE papers could be only enjoyed with authentic solutions. We provide last 25 years GATE EE Papers with Solutions moduled for each subject. Currently we are providing such GATE Paper Solutions for following subjects.

g0022 Preview Image
Electrical & Electronic Measurements
GATE Solved Papers Digital Electronics | Electrical Engineering (EE)
Digital Electronics
Previous GATE Solved Papers for Electromagnetic Fields | Electrical (EE)
Electromagnetic Fields

What is GATE Exam?

GATE stands for Graduate Aptitude Test in Engineering conducted jointly by the Indian Institutes of Technology (IIT’s) and Indian Institute of Science, Bangalore (IISc) on behalf of Ministry of Human Resources Development (MHRD), Government of India. Typically it tests the comprehensive understanding of concepts during the graduation in engineering or science.

On the basis of GATE score one can seek admission into postgraduate(M.E., M.Tech., M.S.) and doctoral(PhD) programmes at IITs, NITs, IISc and almost at all reputed engineering colleges in India. CSIR’s Junior Research Fellowship(JRF) is offered on the basis of GATE merit. JRFs will have an excellent opportunity to work with CSIR Scientists with state-of-art R&D facilities. Many of the Public Sector Companies i.e. PSU like BEL, BHEL, NTPC etc. use GATE score in their recruitment process.

For whom this Course is!

The Course is ideal for any student preparing for GATE Exam and particularly searching for previous GATE Electrical Engineering Papers and Syllabus.

Good Luck!

Share This Course

Scroll to Top

NAGPUR UNIVERSITY

PUNE UNIVERSITY

MUMBAI UNIVERSITY