Q 1) Attempt the questions.
a) In the circuit given in Fig 1 (a) if the voltage V+ and V- are to be amplified by the same factor, the value of R should be _____ [01 M]
(i) 3.3 k
(ii) 33 k
(iii) 330 Ω
(iv) None of these
Justify [04 M]
Solution :
Let R1 = 15 K, R2 = R, R3 = 10 k, R4 = 22 K
Let Va be the voltage at the non-inverting terminal and Vb be the voltage at the inverting terminal of the differential amplifier shown in fig. 1 (a).
Resistors R1 & R2 from a voltage divider network with V+ as the input voltage and Va as the output voltage which is applied to the non-inverting terminal. So,
Va = V+ \left( \frac{R_2}{R_1+R_2} \right)
Now, if A+ is the gain of the non-inverting amplifier and VOUT+ is its output then –
VOUT+ = A+ Va
From the above circuit, we can calculate the non-inverting Gain A+ as :
A+ = 1 + \frac{R_4}{R_3}
∴ VOUT+ = V+ \left( \frac{R_2}{R_1+R_2} \right) \left( 1+\frac{R_4}{R_3} \right)
Now, for the inverting output VOUT-, we have gain A– and output VOUT-
∴ VOUT- = A– V–
∴ VOUT- = – \frac{R_4}{R_3} V–
VOUT = V+ \left( \frac{R_2}{R_1+R_2} \right) \left( 1+\frac{R_4}{R_3} \right) – V– \frac{R_4}{R_3}
Now, V+ & V– are amplified by same factor :
∴ VOUT = 0 & V+ = V–
\left( \frac{R_2}{R_1+R_2} \right) \left( 1+\frac{R_4}{R_3} \right) = \frac{R_4}{R_3}
\left( \frac{R_2}{R_1+15} \right) \left( 1+\frac{22}{10} \right) = \frac{22}{10}
\left( \frac{R_2}{R_1+15} \right) \left( \frac{32}{10} \right) = \frac{22}{10}
32R = 22 R + 330
10R = 330
R = 33 k
Answer : (ii) 33 k
Q 1 b) If the input to the ideal comparator shown in fig. i (b) is a sinusoidal signal of 8 volt peak to peak without any DC component, then the duty cycle of the output comparator is _____ [01 M]
(i) 33.33 %
(ii) 25 %
(iii) 20 %
(iv) None of these
Justify [04 M]
Solution :
Given,
VP-P = 8V = 2 VP
v(t) = 4 sin ωt
V– = 2 V
∴ Duty cycle = \frac{T_{ON}}{T} = \frac{\theta_2}{\theta_1}
Now, θ1 = Sin-1 \left(\frac{2}{4} \right)
θ1 = π/6
and θ2 = π – π/6 = 5π/6
∴ Duty cycle = \frac{\frac{5\pi}{6}-\frac{\pi}{6}}{2\pi} \times 100
= \frac{2\pi}{6\pi} \times 100
= \frac{100}{3}
= 33.33 %
Answer : (i) 33.33 %
Ans :
Given,
For the 555 timer operating in Astable mode as shown in fig 1(c) :
RA = 1 kΩ
RB = 3 MΩ
C1 = 1 nF
∴ The frequency of oscillation is given by :
fo = \frac{1.45}{\left( R_A+2R_B\right)C}
= \frac{1.45}{\left( 1+2\times 3\times 10^3 \right)\times 10^3 \times 10^{-9}} Hz
= \frac{1.45}{6001 \times 10^{-6}}
= \frac{1.45 \times 10^{6}}{6001} Hz
= 241.62 Hz
≈ 241 Hz
Answer : (i) 241 Hz
Q 1 d) An amplifier using OP-AMP with slew rate SR = 1 V/μs has a gain of 40 dB. If this amplifier has to amplify sinusoidal signal of 20 kHz faithfully without any slew rate induced distortion, then the input signal must not exceed _____[01 M]
(i) 795 mV
(ii) 395 mV
(iii) 79.5 mV
(iv) 39.5 mV
Justify [04 M]
Ans :
Given,
Slew rate, SR = 1 V/μs
Gain = 40 dB
Input frequency, f = 20 kHz
Let VP = Peak value of the output sine wave (volts)
Vo = Peak-to-peak sine wave
Now,
Slew Rate, SR = 2πf VP volts/sec
V_P=\frac{SR}{2\pi f} V_P=\frac{1\times 10^6}{2\pi \times 10^3} V_P =\frac{10^2}{4\pi}VP = 7.95 V Peak
or Vo = 2 VP
Vo = 2 x 7.95 V
Vo = 15.9 V
Hence, for the output to be a sine wave, the maximum signal Vin max should be less than –
\frac{V_o}{Gain} = \frac{15.9}{40}= 0.3975 V
= 397.5 mv
≈ 395 mv
Answer : (ii) 395 mv