11. a) Fit a curve $latex y=ab^x$ to the following data. [7M]
x | 2 | 3 | 4 | 5 | 6 |
y | 144 | 172.8 | 207.4 | 248.8 | 298.6 |
Given curve is $latex y=ab^x$ taking logarithm on both sides, we get
$latex \begin{array}{l}\log y=\log a+x\log b\\\\y=A+Bx\end{array}$
where y = logy, A = loga, B = logb
The Normal equation are
$latex \begin{array}{l}\Sigma\;y=nA+B\Sigma\;x\\\\\Sigma\;xy=A\Sigma\;x+B\Sigma\;x^2\end{array}$
so we have a table of the following form
x | y | y = logy | xy | x2 |
2 | 144 | 2.1584 | 4.3168 | 4 |
3 | 172.8 | 2.2375 | 6.7125 | 9 |
4 | 207.4 | 2.3168 | 9.2672 | 16 |
5 | 248.8 | 2.3959 | 11.9795 | 25 |
6 | 298.5 | 2.4750 | 14.85 | 36 |
20 | 11.5836 | 47.126 | 90 |
∴ we have,
$latex \begin{array}{l}11.5836=5A+20B—–\left(i\right)\\\\47.126=20A+90B—–\left(ii\right)\end{array}$
(ii)-(i)×4
0.7916=10B
∴ B=0.07916
$latex \begin{array}{l}A=\frac{11.5836-20\left(0.07916\right)}5\\\\\;\;\;\;=\frac{10.0008}5\\\\\;\;\;\;=2\\\\\;\;\;\;=\log a\end{array}$
$latex \begin{array}{l}\therefore a=Anti\;\log\;A\\\\\;\;\;\;\;\;=Anit\;\log\;2\\\\\;\;\;\;\;\;=10^2\\\\\;\;\;\;\;\;=100\end{array}$
$latex \begin{array}{l}\therefore b=Anti\;\log\;B\\\\\;\;\;\;\;\;=Anit\;\log\;\left(0.07916\right)\\\\\;\;\;\;\;\;=1.199\end{array}$
∴ The required curve is y = 100 (1.199)
b) Find the function whose first order forward difference is $latex x^3-3x^2+9.$ [6M]
Let f(x) be the required function
we have,
$latex \triangle f\left(x\right)=x^3-3x^2+9$
we first express $latex \triangle f\left(x\right)$ in the factorial notation
$latex \triangle f\left(x\right)=x^{\left(3\right)}+0x^{\left(2\right)}-2x^{\left(1\right)}+9x^{\left(0\right)}$
Taking Antidifference, we get
$latex \begin{array}{l}f\left(x\right)=\frac1\triangle\left[x^3-2x^1+9\right]\\\\\;\;\;\;\;\;\;\;=\frac{x^4}4-\frac{2x^2}2+9x+c\\\\\;\;\;\;\;\;\;\;=\frac{x^4}4-x^2+9x+c\\\\\;\;\;\;\;\;\;\;=\frac14x\left(x-1\right)\left(x-2\right)\left(x-3\right)-x\left(x-1\right)+9x+c\\\\\;\;\;\;\;\;\;\;=\frac14\left(x^4-6x^3+11x^2-6x\right)-\left(x^2-x\right)+9x+c\\\\\;\;\;\;\;\;\;\;=\frac14x^4-\frac146x^3+\frac{11}4x^2-\frac64x-x^2+x+9x+c\\\\\;\;\;\;\;\;\;\;=\frac14x^4-\frac32x^3+\frac{11}4x^2-\frac32x-x^2+10x+c\\\\\;\;\;\;\;\;\;\;=\frac14x^4-\frac32x^3+\frac74x^2+\frac{17}2x+c\\\\\;\;\;\;\;\;\;\;=\frac14\left[x^4-6x^3+7x^2+34x+4c\right]\end{array}$
$latex \therefore f\left(x\right)=\frac14\left[x^4-6x^3+7x^2+34x+4c\right]$
Where c is a constant