Qu. 3 (A) Evaluate I=\int_0^a\int_0^x\int_0^{x+y}e^{x+y+z}dx\;dy\;dz
Sol. :- let, I=\int_0^a\int_0^x\int_0^{x+y}e^{x+y+z}dx\;dy\;dz
Integrating w.r.f. z
I=\int_0^a\int_0^x\left[e^{x+y+z}\right]_0^{x+y}dy\;dx =\int_0^a\int_0^x\left[e^{x+y+\left(x+y\right)}-e^{x+y+o}\right]dy\;dx =\int_0^a\int_0^x\left[e^{2x+2y}-e^{x+y}\right]dy\;dxIntegrating w.r.f. y
I=\int_0^a\left[\frac{e^{2x+2y}}2-e^{x+y}\right]_0^xdx I=\int_0^a\left(\frac{e^{2x+2y}}2-e^{x+2x}\right)-\left(\frac{e^{2x+0}}2-e^{x+0}\right)dx I=\int_0^a\left[\frac{e^{4x}}2-e^{2x}-\frac{e^{2x}}2+e^x\right]dx I=\int_0^a\left[\frac{e^{4x}}2-\frac{3e^{2x}}2+e^x\right]dx =\left[\frac12\times\frac{e^{4x}}4-\frac32\times\frac{e^{2x}}2+e^x\right]_0^a =\left[\frac18e^{4x}-\frac34e^{2x}+e^x\right]_0^a =\left[\frac18e^{4a}-\frac34e^{2a}+e^a\right]-\left[\frac18e^0-\frac34e^0+e^0\right] =\left[\frac18e^{4a}-\frac34e^{2a}+e^a\right]-\left[\frac18-\frac34+1\right] =\frac18e^{4a}-\frac34e^{2a}+e^a-\frac38 =\frac18\left(e^{4a}-6e^{2a}+8e^a-3\right) \therefore\int_0^a\int_0^x\int_0^{x+y}e^{x+y+z}=\frac18\left(e^{4a}-6e^{2a}+8e^a-3\right)(C) Solve \left(2x+1\right)^2\frac{d^2y}{dx^2}-6\left(2x+1\right)\frac{dy}{dx}+16y=8\left(2x+1\right)^2
sol. :- put \begin{array}{l}\left(2x+1\right)=e^z\\\therefore x=\log\;\left(2x+1\right)\\\therefore x=\frac{1+e^z}2\end{array}
\begin{array}{l}\therefore\left(2x+1\right)\frac{dy}{dx}=\left(2D\right)y\\\end{array} \begin{array}{l}\left(2x-1\right)^2\frac{d^2y}{dx^2}=4D\left(D-1\right)y\;\;\&\;\;D=\frac d{d^z}\\\end{array}puting this value
We get,
\begin{array}{l}4D\left(D-1\right)y-6\left(2D\right)y+16y=8\left(e^z\right)^2\\\end{array} \begin{array}{l}\left(4D^2-4-12D+16\right)y=8\left(e^z\right)^2\\\end{array} \begin{array}{l}\left(4D^2-16D+16\right)y=8\left(e^z\right)^2\\\end{array}Dividing by 4
\begin{array}{l}\left(D^2-4D-4\right)y=2\left(e\right)^2\\\left(D^2-4D+4\right)y=2e^{2z}\\\end{array}Now,
put D = m
Its Auxiliary Equ is
\begin{array}{l}m^2-4m+4=0\\\therefore m=2,\;2\\\end{array}Therefore complimentary \begin{array}{l}f^h\left(c.f.\right)\;is\;\\yc\;=\;\left(c_1+zc_2\right)e^{2z}\end{array}
Also,
Particular integral (P.I.) is yp = \frac1{f\left(D\right)}\times
\begin{array}{l}\therefore yp=\frac1{\left(D-2\right)^2}2e^{2z}\\=2\times\frac z{2\left(D-2\right)}e^{2z}\end{array} \begin{array}{l}=z\times\frac z1e^{2z}\\yp=z^2e^{2z}\end{array}Therefore The complete solu. is y = yc = yp
\begin{array}{l}\therefore y=\left(c_1+zc_2\right)e^{2z}+z^2e^{2z}\\y=\left(c_1+zc_2+z^2\right)e^{2z}\end{array} y=c_1+\log\;\left(2x+1\right)c_2+\left(\log\;\left(2x+1\right)^2\right)e^{2\left(2x\right)} y=\left{c_1+\log\;\left(2x+1\right)c_2+\left[\log\left(2x+1\right)\right]^2\right}\;\left(2x+1\right)^2