LinkedIn Insight Boolean Algebra - Grad Plus
GATE-EE Solutions for Digital Electronics | Boolean Algebra
GATE-EE Solutions for Digital Electronics | Logic Gates
GATE-EE Solutions for Digital Electronics | Combinational Circuits
GATE-EE Solutions for Digital Electronics | Sequential Circuits
GATE-EE Solutions for Digital Electronics | Logic Families
GATE-EE Solutions for Digital Electronics | A/D & D/A
GATE-EE Solutions for Digital Electronics | Microprocessors

Boolean Algebra

[1999: 2 M] The logic function f=\overline{\left(x.y\right)+(\overline x.y)} is the same as

a) f=\left(x+y\right)\left(\overline x+\overline y\right)

b) f=\overline{\left(\overline x+\overline y\right)\;\left(x+y\right)}

c) f=\overline{\left(x.y\right)}\;\left(\overline x.\overline y\right)

d) none of the above

Ans: (b)

Explanation

f=\overline{\left(x\cdot\overline y\right)+\left(\overline x\cdot y\right)}=\overline{\left(x\cdot\overline y\right)}\cdot\overline{\left(\overline x\cdot y\right)} =\left(\overline x+y\right)\cdot\left(x+\overline y\right)=xy+\overline x\;\overline y

Simplifying option (b) we have,

\overline{\left(\overline x+\overline y\right)\;\left(x+y\right)}=\left(\overline{\overline x+\overline y}\right)+\left(\overline{x+y}\right) =xy+\overline x\;\overline y\;=f

[2000: 2 M] The minimal product-of-sum function described by the k-map given in figure, is

a) A’ C’

b) A’ +C’

c) A+C

d) AC

Ans: (a)

Explanation


[2003: 2 M] The Boolean expression \overline XY\overline Z+\overline X\;\overline Y\;Z+X\overline YZ+XYZ\; can be simplified to

a) X\overline Z+\overline XZ+YZ

b) XY+\overline YZ+Y\overline Z

c) \overline XY+YZ+XZ

d) \overline{XY}+Y\overline Z+\overline XZ

Ans: (b)

Explanation

Let us present given expression in the k-map.

After simplification, XY+Y\overline Z+\overline YZ


[2004: 2 M] The simplified form of the Boolean expression Y=\left(\overline ABC+D\right)\;\left(\overline AD+\overline B\;\overline C\right) can be written as

a) \overline AD+\overline B\;\overline CD

b) AD+B\overline CD

c) \left(\overline A+D\right)\left(\overline BC+\overline D\right)

d) A\overline D\;+BC\overline D

Ans: (a)

Explanation

Y=\left(\overline ABC+D\right)\;\left(\overline AD+\overline B\;\overline C\right) =\overline A\;BC\overline AD+\overline A\;BC\overline B\;\overline C+\overline A\;D+\overline B\;\overline C\;D =\overline A\;BCD+0+\overline A\;D+\overline B\;\overline C\;D =\overline A\;D(BC+1)+\overline B\;\overline C\;D =\overline A\;D+\overline B\;\overline C\;D

[2005: 2 M] In the given figure, if the input is a sinusoidal signal, the output will appear as shown in diagram

Ans: (c)

Explanation

As Op-amp is in open loop, output will be at its saturation values.

For +ve half of the input, D1 will conduct. Hence, voltage at negative terminal of op-amp is vin while voltage at positive terminal will be (vin ‒ 0.7). In other words, negative terminal of op-amp is 0.7V higher than positive terminal. So, output will be -Vsat.

On the similar lines, for -ve half of the input, D2 will conduct. Hence, voltage at positive terminal of op-amp is vin while voltage at negative terminal will be (vin ‒ 0.7). In other words, positive terminal of op-amp is 0.7V higher than negative terminal. So, output will be +Vsat.


[2010] Statement for linked Answer Questions

The following Karnaugh map represents a function F.

[2010: 2 M] A minimized form of the function F is

a) F=\overline XY+YZ

b) F=\overline X\;\overline Y+YZ

c) F=\overline X\;\overline Y+Y\overline Z

d) F=\overline X\;\overline Y+\overline YZ

Ans: (b)

Explanation

F=\overline X\;\overline Y+Y\;Z

[2010: 2 M] Which of the following circuits is a realization of the above function F?

Ans: (d)

Explanation

NAND gate with same input acts as an inverter. So, the from figure(d), it is clear that, two NAND gates generate the \overline X and \overline Y.

Two AND gates with i/ps \overline X and \overline Y and inputs Y and Z in addition with OR gate is used to generate two terms of SOP form and generate the F.


[2012: 1 M] In the sum of products function: f\left(X,\;Y,\;Z\right)=\sum\left(2,\;3,\;4,\;5\right) the prime implicants are

a) \overline XY+X\overline Y

b) \overline XY+X\overline Y\;\overline Z+X\overline YZ

c) \overline XY\overline Z+\overline XY\;Z+X\overline Y

d) \overline XY\overline Z+\overline XY\;Z+X\overline Y\;\overline Z+X\overline YZ

Ans: (a)

Explanation

f(X, Y, Z)= Σ(2, 3, 4, 5)

\therefore\;f\left(x,\;y,\;z\right)=X\overline Y+\overline XY

[2014: 1M, Set-2] Which of the following is an invalid state in 8-4-2-1 Binary Coded Decimal counter

a) 1 0 0 0

b) 1 0 0 1

c) 0 0 1 1

d) 1 1 0 0

Ans: (d)

Explanation

Binary coded decimal counter counts from 0 to 9. So, 1100 is an invalid state i.e. 12.


[2014: 2 M, Set-2] The SOP (sum of products) form of a Boolean function is Σ(0, 1, 3,7, 11), where inputs are A, B, C, D(A is MSB, and D is LSB). The equivalent minimized expression of the function is

a) \left(\overline B+C\right)\;\left(\overline A+C\right)\;\left(\overline A+\overline B\right)\;\left(\overline C+D\right)

b) \left(\overline B+C\right)\;\left(\overline A+C\right)\;\left(\overline A+\overline C\right)\;\left(\overline C+D\right)

c) \left(\overline B+C\right)\;\left(\overline A+C\right)\;\left(\overline A+\overline C\right)\;\left(\overline C+\overline D\right)

d) \left(\overline B+C\right)\;\left(A+\overline B\right)\;\left(\overline A+\overline B\right)\;\left(\overline C+D\right)

Ans: (a)

Explanation

The 4 variable Boolean function is given in canonical (SOP) sum of products form as, f(A, B, C,D)=Σ(0, 1, 3, 7, 11)

But, the options are given in the simplified (POS) product of sums form. So, convert the given function in canonical product of sums form,

f(A, B, C, D)= Π(2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15)

Plotting the above function on a 4 variable K-map (Maxterms map), we obtain the simplified expression of the function

f=\left(\overline B+C\right)\cdot\left(\overline A+C\right)\cdot\left(\overline A+\overline B\right)\cdot\left(\overline C+D\right)

[2015: 2 M, Set-1] f(A, B, C, D) = Π M(0,1, 3, 4, 5, 7, 9, 11, 12, 13, 14, 15) is a maxterm representation of Boolean function f(A, B, C, D) where A is the MSB and D is the LSB. The equivalent minimized representation of this function is

a) \left(A+\overline C+D\right)\;\left(\overline A+B+D\right)\;

b) A\overline CD+\overline ABD

c) \overline AC\overline D+A\overline BC\overline D+A\overline B\;\overline C\;\overline D

d) \left(B+\overline C+D\right)\left(A+\overline B+\overline C+D\right)\left(\overline A+B+C+D\right)

Ans: (a)


[2015: 1 M,Set-2] Consider the following Sum of Products expression, F.

F=ABC+\overline A\;\overline BC+A\overline BC+\overline ABC+\overline A\;\overline B\;\overline C

The Equivalent Product Of Sums expression is

a) F=\left(A+\overline B+C\right)\left(\overline A+B+C\right)\left(\overline A+\overline B+C\right)

b) F=\left(A+\overline B+\overline C\right)\left(A+B+C\right)\left(\overline A+\overline B+\overline C\right)

c) F=\left(\overline A+B+\overline C\right)\left(A+\overline B+\overline C\right)\left(A+B+C\right)

d) F=\left(\overline A+\overline B+C\right)\left(A+B+\overline C\right)\left(A+B+C\right)

Ans: (a)

Explanation

The expression SOP in k-map is given as

So, POS form can be formed using ‘0’s from the K-map

POS=F=\left(A+\overline B+C\right)\left(\overline A+B+C\right)\left(\overline A+\overline B+C\right)


[2016: 1 M, Set-2] The output expression for the Karnaugh map shown below is

a) A+\overline B

b) A+\overline C

c) \overline A+\overline C

d) \overline A+C

Ans: (b)

Explanation

F=A+\overline C

[2016: 2 M, Set-2] The Boolean expression: \overline{\left(a+\overline b+c+\overline d\right)+\left(b+\overline c\right)} simplifies to

a) 1

b) \overline{a.b}

c) a, b

d) 0

Ans: (d)

Explanation

F=\overline{\left(a+\overline b+c+\overline d\right)+\left(b+\overline c\right)} =\overline{\left(a+\overline b+c+\overline d\right)}\cdot\overline{\left(b+\overline c\right)} =\overline a\cdot b\cdot\overline c\cdot d\cdot\overline b\cdot c

= 0


[2017: 1 M, Set-1] The Boolean expression, AB+A\overline C+BC simplifies to

a) BC+A\overline C

b) AB+A\overline C+B

c) AB+A\overline C

d) AB+BC

Ans: (a)

Explanation

F=A\overline C+BC=BC+A\overline C

[2017: 2 M, Set-1] The output expression for the Karnaugh map shown below is

a) B\overline D+BCD

b) B\overline D+AB

c) \overline BD+ABC

d) B\overline D+ABC

Ans: (d)

Explanation

ABC+B\overline D

[2018: 2 M] Digital input signals A, B, C with A as the MSB and C as the LSB are used to realize the Boolean function F=m0+m2+m3+m5+m7, where mi denotes the Ith minterm. In addition, F has a don’t care for m1. The simplified expression for F is given by

a) \overline A\;\overline C+\overline BC+AC

b) \overline A\;+C

c) \overline C\;+A

d) \overline AC\;+BC+A\overline C

Ans: (b)

Explanation

Putting the given minterms in k-map

Scroll to Top